【講義】多角形の内角の和

  • 正解率:37.50%
  • 解答数:8

EXAMPLE

例題

次の多角形の内角の和を求め,ア,イに当てはまる数を半角英数字で入力しなさい。

  1. 五角形
  2. \[ \text{内角の和:}\fbox{ア}^{\circ} \]

  3. 十二角形
  4. \[ \text{内角の和:}\fbox{イ}^{\circ} \]

ア:
イ:

TEXT

テキスト解説

三角形,四角形,五角形など,いくつかの線分で囲まれた図形を多角形といいます。

対角線は頂点と頂点を結ぶことにより引くことができますが,自分自身と自分の隣の頂点には対角線を引くことができません。つまり,$n$角形の場合,$n$個ある頂点から3個の頂点を除いた分だけ,1つの頂点から対角線を引くことができるので,1つの頂点から引くことのできる$n$角形の対角線の本数は$(n -3)$本ということになります。

次の図のように,1つの頂点(ここでは,頂点A)から対角線を1本引くと,三角形を1つ作ることができます。

そして,そこから順に対角線を1本ずつ増やすにつれ,できる三角形の個数も1つずつ増えることになります。しかし,最後の1本の対角線を引く場合には,三角形は1つではなく,2つの三角形が作られます。

このことから,多角形を対角線で分割することにより,三角形は対角線の本数よりも1個だけ多く作ることができます。$n$角形の場合,1つの頂点から引くことのできる対角線の本数は$(n -3)$本であったので,対角線によってできる三角形の個数はそれよりも1つ多くなることから,

\[ (n -3) +1 = n -2 \ \text{(個)} \]

となります。そして,「三角形の3つの内角の和は$180^{\circ}$」であることがわかっているので,$n$角形の内角の和は,

\[ (\text{$n$角形の内角の和}) = 180^{\circ} \times (n -2) \]

という式で求めることができます。

MOVIE

動画解説


このページの学習内容でわからないところがある方

必要事項を記入して送信してください。名前,メールアドレス,質問内容が公開されることはありません。