【講義】連立方程式とグラフ

  • 正解率:15.00%
  • 解答数:20

EXAMPLE

例題

次の連立方程式をグラフを用いて解き,ア,イに当てはまる数を半角英数字で入力しなさい。また,計算でも解いて確かめなさい。

{3x2y=42x+y=5
x=,y=

ア:
イ:

TEXT

テキスト解説

方程式ax+by=cのグラフが次の図の①の直線,px+qy=rのグラフが次の図の②の直線であるとします。

この直線上の点の座標は,それぞれの方程式の解になっているので,2つの直線の交点(上図の点P)は,2つの方程式の共通の解ということになります。つまり,点P(2直線の交点)の座標が,次の連立方程式の解になります。

{ax+by=cpx+qy=r

ただし,2つの方程式のグラフが同じになるとき,共通な解は無数に存在(このような連立方程式は不定といいます)し,2つの方程式のグラフが平行になるときは,交点を持たないので共通な解は存在しない,つまり,連立方程式の解はありません(このような連立方程式は不能といいます)。

このようにして,方程式をグラフで表すことにより,方程式の解を視覚的に判断ができるようになります。さらに,図に表すことで,図形の性質を利用して解を求めることもできる場合もあります。方程式とグラフとの密接な関係をしっかりと理解し,それを利用できるようにしましょう。

MOVIE

動画解説


このページの学習内容でわからないところがある方

必要事項を記入して送信してください。名前,メールアドレス,質問内容が公開されることはありません。